Solution of PDEs for First-Order Photobleaching Kinetics using Krylov Subspace Spectral Methods

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stability of Krylov Subspace Spectral Methods

This talk summarizes recent analysis of an alternative approach to the solution of diffusion problems and wave propagation problems in the variable-coefficient case that leads to a new class of numerical methods, called Krylov subspace spectral methods [3]. The basic idea behind these methods, applied to a PDE of the form du/dt + L(x,D)u = 0, is to use Gaussian quadrature in the spectral domain...

متن کامل

Practical Implementation of Krylov Subspace Spectral Methods

Krylov subspace spectral methods have been shown to be high-order accurate in time and more stable than explicit time-stepping methods, but also more difficult to implement efficiently. This paper describes how these methods can be fashioned into practical solvers by exploiting the simple structure of differential operators Numerical results concerning accuracy and efficiency are presented for ...

متن کامل

Recent Advances in Krylov Subspace Spectral Methods

This paper reviews the main properties, and most recent developments, of Krylov subspace spectral (KSS) methods for time-dependent variable-coefficient PDE. These methods use techniques developed by Golub and Meurant for approximating elements of functions of matrices by Gaussian quadrature in the spectral domain in order to achieve high-order accuracy in time and stability characteristic of im...

متن کامل

Krylov Subspace Spectral Methods for Systems of Variable-Coefficient PDE

For scalar time-dependent variable-coefficient PDE, it has been demonstrated that Krylov subspace spectral (KSS) methods achieve high-order accuracy and also possess highly desirable stability properties, especially considering that they are explicit. In this paper, we examine the generalization of these methods to systems of variable-coefficient PDE by selection of appropriate bases of trial a...

متن کامل

Block Krylov Subspace Spectral Methods for Variable-Coefficient Elliptic PDE

Krylov subspace spectral (KSS) methods have been demonstrated to be effective tools for solving time-dependent variable-coefficient PDE. They employ techniques developed by Golub and Meurant for computing elements of functions of matrices to approximate each Fourier coefficient of the solution using a Gaussian quadrature rule that is tailored to that coefficient. In this paper, we apply this sa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Biophysical Journal

سال: 2017

ISSN: 0006-3495

DOI: 10.1016/j.bpj.2016.11.3153